emc sTANDARDS

Another EMC resource from EMC Standards

Handbook on EN 61000-4-2: Personnel Electrostatic Discharge (ESD)

 when following the self－declaration to standards route to conformity（Article 10.1 in［3］），EN 61000－4－2 should not be listed on the EMC Declaration of Conformity．Only the relevant generic or product－family harmonised EMC standards should be
listed．These will usually call－up EN or IEC $61000-4-2$ as a test method，but it is always the generic or product－family

 When using the Technical Construction File（TCF）route to conformity with the s！！！（［ع］u！て＇OL əן！ ‘К｜ŋəə！！乙－七－000 L9 ЭヨI／Nヨ əsn of əlq！ssod in which case it should be listed on the product＇s EMC Declaration of Conformity．
 should assess the electromagnetic environment of the product and ensure
 accordingly，so as to comply with
Directive＇s essential＇Protection Requirements＇（Article 4 of［3］）．
The relationship between EN 61000－4－2

 with the EMC Directive

The basic immunity test method for

 personnel ESD is IEC 61000－4－2［1］．This has been adopted as the harmonised European standard EN 61000－4－2［2］， which is often called up as a basic test method by immunity standards listed under the Electromagnetic Compatibility（EMC）Directive［3］ （EMC）Directive［3］． All people can carry static charges capable of damaging almost all types of semiconductors．The discharge of these personnel static charges gives rise to transient currents and electromagnetic

 handbook）．So it makes good sense to test products for＇personnel ESD＇to ensure they will work reliably despite the static charges on the people in their intended operating environment．This is especially important in safety－related， high－reliability，mission－critical，or
metrology electronic applications．

Follow one route
or the other
kinds of EM environments. For instance,
SO10605 for ESD testing, and often test up to 15 kV .
This handbook describes how to apply the version of EN 61000-4-2 that is current at the time of writing and applies equally well to the latest version (2001) of IEC 6 . Despite being marked as '1995', the $4-2$. Despite being marked as '1995', the
incorporates amendments A1 (1998) and A2 (2000) to IEC 61000-4-2:1995. The 2001 version of IEC 61000-4-2 is simply a consolidation of the previous
amendments. It is always best to use the
 where regulatory requirements for the EU
 be used. Since many national tests
standards, this handbook may be of use
where non-EU EMC specifications apply. where non-EU EMC specifications apply.
Where an electronic product has a safetyrelated or legal metrology function,
requires high reliability, or is missioncritical - mere compliance with the EMC Directive is often insufficient for ensuring that it has been designed correctly additional and/or tougher immunity requirements may need to be applied.
 esting and real-life reliability" later, plus
 [6] for more on this, and also read the
section below on real-life reliability,
covered by the generic, product or product-family immunity standards listed under the EMC Directive, meaning that it is up to the manufacturer to assess the electromagnetic (EM) environment that his/her product will be used in and test it accordingly, to comply with the EMC Directive's Protection Requirements.

 applies in addition to the requirement to follow one of the conformity assessment routes (Self-Declaration, Article 10.1; or TCF, Article 10.2). Products that pass listed under the EMC Directive, but nevertheless are unreliable or fail in normal use because they are not immune enough for their real-life EM environment, do not comply with the EMC Directive's Protection Requirements and are
therefore illegally CE marked.

Applying EN 61000-4-2 (or similar) ESD tests which go beyond the minimum requirements of the EMC Directive's listed standards can also be a way to help make products more reliable, reduce warranty swieן - for more on this refer to the section on "Personnel ESD testing and real-life reliability" later.

This series of handbooks is concerned with testing to the EN standards for typica domestic, commercial, light industrial and industrial environments. But other kinds of
immunity tests may be required by the EMC standards for automotive,
aerospace, rail, marine and military have developed their own ESD test
standards based on their own particular

Important Safety Note: People whose health depends on the correct operation of pacemakers or other body-worn or
implanted electro-medical devices should never go near any EMC immunity tests or their associated test equipment, including ESD tests or test equipment.

There may be significant financial or compliance benefits in performing ESD mmunity tests that go beyond simply complying with the minimum requirements for Self-Declaration to the EMC Directive. This is especially true where products may be used in dry environments (relative humidity less than 25%), or where sources of ESD other than personnel are
significant (see the later section on 'Other types of ESD').
 2004/108/EC [4], replaces 89/336/EEC on 20th July 2007. Products that are already being supplied in conformity with 89/336/EEC will be allowed to be supplied unust comply with 2004/108/EC. Whereas must comply with 2004/108/EC. Whereas Competent Body with all TCFs,

2004/108/EC effectively allows the TCF route to be used with the optional
involvement of a Notified Body (the new term for Competent Bodies).

Under 2004/108/EC, equipment
manufactured specifically for use at a named fixed installation may not naven it is supplied. But testing to EN 61000-4-2 at specified levels will generally be a require that his fixed installation complies with the EMC Directive's Protection Requirements.
and the second edition of the EMC Directive (2004/108/EEC)

EN 61000-4-2 (basic test method for immunity to personnel ESD)

The relationship between EN 61000-4-2

Also required
by the Directive

Generation method	The electrostatic voltage generated (in kV)	
	$10-20 \%$ Relative Humidity (RH)	$65-90 \%$ Relative Humidity (RH)
Walking across carpet	35	1.5
Walking on vinyl floor	12	0.25
Worker moving at non-metal bench	6	0.1
Opening a vinyl envelope	7	0.6
Picking up a polyurethane bag	20	1.2
Sitting on a polyurethane foam padded chair	18	1.5

dust over a metal surface). Where the from people, so-called personnel ESD, is a dust over a metal surface). Where the
voltage is sufficient to break down the air between the two materials (by ionising the air and making it highly conductive) a
spark occurs as the separated charges attempt to equalise themselves. Such sparking is known as an air discharge. Discharges can also happen in vacuum, in any their breakdown field strength solids when their breakdown field strength (in Volts/meter) is exceeded and their
atoms or molecules ionise and so become conducting. Detectable sparks occur surfaces - insulators (such as plastics)
 of their surface, so the energies in their sparks are much less.

Aircraft (fixed-wing and rotorcraft) become tribocharged by their movement through the air, especially in rain or hail, and this is a serious hazard for in-flight refuelling. Closer to the ground, there are many
possibilities for tribocharging in the possibilities for tribocharging in the
modern world, where natural materia constantly being replaced by plastic materials that are more insulating. ESD

Example of tribocharging (or 'triboelectrification')
Two different materials are brought together
(e.g. sole of shoe and carpet)
Assume they have no net charge difference initially Contact between the two allows electrons to
move from one material to the other (tribocharging)

Any friction (rubbing) between the two
increases the charge transferred (Q)

The two materials are separated, and the

 charge imbalance between them remains The voltage (\mathbb{V}) between them rises as thecapacitance (C) between them decreases due
 Static charges accumulate on an object or a person through a process known as tribocharging. Basically this means that where dissimilar materials are in rubbing or sliding contact, one of them will 'steal' electrons from the other, creating a separation of electrical charge between the two materials. If the materials are then separated, so that the capacitance (C) between them decreases, the charge (Q) on each (positive charge on one, negative on the other) remains the same but the voltage (V) associated with the charge separation increases, according to $Q=$ CV.

Tribocharging is mostly seen when at least one of the materials is an insulator. It happens with dissimilar metals too, but the unless the rate of separation of the metal
pieces is very fast (e.g. blowing metal unless the rate of separation of the metal
pieces is very fast (e.g. blowing metal
ging (or 'triboelectrification')
Two different materials are brought together
(e.g. sole of shoe and carpet)
Assume they have no net charge difference
initially
Contact between the two allows electrons to
move from one material to the other
(tribocharging)
Any friction (rubbing) between the two
increases the charge transferred (Q)

The two materials are separated, and the
charge imbalance between them remains
The voltage \mathbb{V}) between them rises as the
capacitance (\mathbb{C}) between them decreases due
to increased spacing ($Q=C V)$

Electrostatic charging (and subsequent discharging) is the first electrical phenomenon ever investigated by humankind - by the ancient Greeks with their cat fur and ebony rods. Many children have enjoyed watching sparks fly as they comb their hair in the dark. We are all used to receiving electric shocks from ESD, usually from our fingers as we go to open a door or cabinet with a metal handle, usually when the air is very dry.

Sometimes these shocks can be quite painful. Interestingly, most people will not notice that a spark fingers unless the discharge voltage is at least 3 kV .

Personnel ESD immunity simply refers to a product's immunity to the static electrical voltages and their discharges from
people's fingers, or from keys or other
metal objects held in their hands.
 known to charge up their rotors through ss the rotor then sparking regularly across crashing a microprocessor in the same 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 pulleys or rollers - either for conveying or levels of static charge with consequent sparking. Printers and copiers can suffer from internal ESD due to dry paper being fed through rubber rollers and sliding
'Machine ESD' can be a very big problem in processing industries and vehicles, where liquids, particles or dusts (e.g. processed or sloshed around. Large metal items with large capacitance can become charged up to very high voltages, and in

1) Static electric fields caused by the
existence of charged bodies or objects
 be more accurate to say slowly varying electric fields. These can have magnitudes high enough to charge-up sensitive circuits (especially high-impedance circuits) and make them to malfunction, maybe even enough to damage associated semiconductor devices.

These high currents are what causes damage to the silicon features in semiconductors. There is generally
 event to damage other parts of devices or circuits - but this may not be true for
other kinds of ESD, especially machinery
 become charged to very high voltages, causing ESD events with much larger

The high currents associated with a discharge (which can be of the order of 30A during an EN 61000-4-2 test) flow around shields and through conductors,

 linear, so it can be possible for significant
 but not at high voltages, or with one ESD polarity but not the other. This helps explain some of the test requirements in EN 61000-4-2.
3) Strong transient electric and magnetic fields during a discharge

These can couple to circuits and interfere with their operation. The field strengths
created by a 5 kV test using EN 61000-4-2
some of the industries the materials being processed are flammable and can be officially claimed to have brought down TWA-800). Liquids don't cause charge
thsə әч 1 '
different mechanism. However, the result
is a charge separation with the possibility is a charge separation with the possibility
of a spark discharge as a result.
It is not uncommon for an 'earthing strap' in out through corrosion or vibration, with the result that large ESD events can interfere with (or damage) electronic equipment. drowned out by the noise from the plant, but running the plant with the lights out (where this can be done safely) can help dentify such problems by making the more visible. One of the problems with machine ESD is that the risetimes are
 ןセıə frequency spectrum can be much higher than that of EN 61000-4-2 tests. The
 much greater than personnel ESD, due to the higher capacitance of large metal objects.
What problems can be caused by ESD?
All semiconductors and many other cost reasons, so they are limited in the energies they can handle without being damaged themselves. Very few ICs will survive an EN 61000-4-2 test applied directly to their pins, so additional ESD protection is required from their circuits and enclosures.
There is a large body of work and standards concerned with protecting electronic devices during their fabrication or assembly onto a printed circuit board (PCB). This is not the subject of this booklet, but it is worth noting - to help avoid confusion - that some of the names are similar to those used elsewhere in this are similar to those used elsewhere in this booklet (e.g. human body model;
personnel ESD; machine ESD; etc.),
However, they do not relate to what is being discussed here - final product testing using EN 61000-4-2.
Examples of ESD damage levels for devices
(səınsoןכuә pue s!!!כэ!
These figures are based on testing unassembled devices with semiconductor industry's 'human body model', which discharges a 100pf capacitor through a

Compare this test with EN 61000-4-2, used for testing finished products, which uses 150 pF discharged through 330Ω, peak current 30 A , risetime $0.7-1$ ns

Type of Device (typical 2002 technology)	Typical sensitivity (kV)
MR heads, RF FETs	$0.01-0.1$
Power MOSFET transistors	$0.1-0.3$
VLSI	$1-3$
Film resistor	$1-5$
HC and similar CMOS glue logic	$1.5-5$
Small-signal bipolar transistor	$2-8$
Power bipolar transistor	$7-25$

A big problem with warranty claims and field service is the 'no-fault-found' customer return. Many manufacturers spend considerable amounts of money to try to keep their customers happy, despite not knowing what the cause of the problem is. Many no-fault-found problems by inadequate ESD immunity performance, but EMC and ESD events are often hard to repeat and few EMC/ESD experts or have any EMC/ESD testing gear).

The financial rewards of producing products with adequate immunity can be very great indeed, as one UK manufacturer discovered when they spent $£ 100,000$ on redesigning their products to comply with the new issues of the EMC Directives immunity standards around mid2001, and found to their complete surprise that their new products designs saved them $£ 2.7$ million in warranty costs per year.

As you can see from the above sections, EN 61000-4-2 only covers a small range of possible ESD events, and various different models of (EN 61000-4-2 compliant) ESD gun can give wildly different results when testing the same equipment [12]. Personnel ESD is certainly an important issue for almost all products, but is often not the only ESD issue, and other ESD events may involve faster risetimes and so not be addressed by the waveform used in
EN $61000-4-2$ testing.

At least one manufacturer [9] makes an ESD gun that has much faster risetimes than the $0.7-1$ ns required for EN/IEC 61000-4-2 compliant generators - but it still uses the human body model and has a
150Ω series resistance, not the 0Ω resistance of some types of ESD event For details of an ESD generator that
The signals used in circuits can suffer
intererence rom the various EM events. DC and low-frequency analogue signals experience ESD as a momentary 'glitch' that might not be very important
(depending on the circuit and its speed and high-frequency analogue circuits are more likely to cause malfunctions, for instance interference with the gate drive signals in switch-mode power converters can cause crossconduction leading to explosive disassembly of the power switching devices (i.e. they can blow up, and large much energy and shrapnel as a grenade).
Digital signals can often easily suffer rerence from ESD, because even have a very low rate the digital devices they are connected to are usually permitted to respond very quickly indeed, registering ESD events as false signals. High-speed
 events, so are very susceptible to ESD interference, even a few hundred millivolts can be enough to create erroneous data.

[^0]Full compliance personnel ESD immunity testing
ESD guns compliant to the latest version of EN/IEC 61000-4-2 are easy to buy or hire, and relatively straightforward to use, and no special test facilities are required (but see the section on preventing
The standard 'human body model'
waveform for the EN 61000-4-2 ESD test is a single unidirectional impulse, given in its Figure 3. Figure 1 of EN 61000-4-2 gives the basic scheme of an ESD generator or 'gun'.
EN 61000-4-2 testing done fully in
accordance with the standard is not very well controlled. Much depends on the skill and in actually applying the discharges to the product.

The test set-up
The basic set-up
separation distance between the EUT and pue 6u!puets roolf dof wmool s! dyפ ә૫ł 800 mm for table-top products. (The
distance of 100 mm is helpfully the same as the thickness of a fork lift truck pallet.) There should also be at least a 1 m clear
area around the EUT (apart from the tester and ESD gun).

The VCP is 500 mm square, and held 100 mm away from the side of the EUT
during testing by an insulating fixing. It is during testing by an insulating fixing. It is connected to the GRP by a special 'bleed lead' that isolates the HCP during the actual discharge but allows charge to slowly conduct away (bleed) afterwards. The bleed lead is constructed with $470 \mathrm{k} \Omega$ high-voltage resistors located at each of its ends, so that its stray inductance and capacitance are isolated from both the HCP and the ground plane at high
are usually used (not film types).
frequencies. Carbon composition resistors

The basic human body circuit model

(from Figure 1 of EN 61000-4-2)
 The basic set-up is straightforward. The
EUT is placed over a ground reference plane (GRP) to which the ground lead from the ESD gun is directly connected. The any horizontal and vertical coupling planes (HCP and VCP) that are used - by at least 0.5 m all around, and be connected to
 its manufacturer's installation instructions.

The gun's ground lead is calibrated with the generator, and the lead that is used for calibration must be the same lead that is used for the testing. Different leads will have different inductances, and this could modify the discharge waveform, particularly its trailing edge. The lead and other structures (by at least 200 mm), and the test engineer's body. The

Introduction
relevant version (including any
amendments), and follow it exactly
This booklet is not a complete recital of
everything that is in EN 61000-4-2, only a general guide. Anyone performing tests to this standard must have a copy of its
simulate the effects of electrostatic
 either directly or via keys or other metal
 assumed to have become charged to a high voltage by tribocharging, usually due
to rubbing contacts between their shoes or clothing, and dissimilar materials used for flooring, storage, etc.
Introduction
This basic ESD test standard aims to simulate the effects of electrostatic

The standard EN 61000-4-2 current waveshape (from Figure 3 of EN 61000-4-2)

(from Figure 3 of EN 61000-4-2)

 take a very long time for some types of product.

Special exercising software can be run on the product instead of normal software, to save testing time, but must EN $61000-4-2$ helps to save more time during full compliance testing by requiring that the most sensitive mode of operation be determined in advance by preliminary
 during the test. This seems to ignore the fact that it is possible that there might not be just one 'most sensitive mode of
operation' - there may be several, each of them 'most sensitive' for different tested

 is not exactly what EN 61000-4-2 says shall be done.
The test set-up for table-top products
(adapted from Figure 5 of EN 61000-4-2) As is usual with EMC test standards, EN 61000-4-2 requires that equipment be setup and operated as close as possible to
its normal operation in real life.
During the execution of software, the susceptibility of a product to interference is usually much worse at some instants
than it is for the rest of the time. These instants are usually not known, making it proble a ESD, to be applied at just the right instant
This is one of the reasons why there is a This is one of the reasons why there is a
proposal to increase the number of
discharges applied from 10 to 50 (at each voltage, at each polarity, at each tested location).
EN 61000-4-2, like all other immunity
 UT the normal modes of operation or EUT to be tested. Because of the number of locations that must be tested to
Courtesy of Thermo Electron Corporation: the KeyTek MiniSap ${ }^{\circledR}$

Products that are classed as 'table-top' The EUT's cables are draped off the HCP (making sure to insulate them from the HCP who. taken away from the test area as necessary. EN 61000-4-2 is weak in this respect - although (as with other RF tests) cable layout and termination can make a large difference to the test outcome, it says virtually nothing about how they should be treated, except that they should be "...representative of installation practice". are tested on an 800 mm high wooden table. A secondary metal plane, the HCP, is placed on the top of the table, then a 0.5 mm thick sheet of plastic is placed on top of it, then the EUT is placed on the plastic. The HCP is connected to the GRP by another bleed lead. The HCP must be 1.6 by 0.8 m and it is normal to make the table so that its top is just this size, then completely cover it with the 0.5 mm thick insulation leaving only the edges of the
HCP exposed.

The EUT is placed with its front face
100 mm from the front edge of the HCP. Where the EUT is so large that the edge of the HCP is not 100 mm or more away around all of its sides, two or more
solated HCPs should be used to cover sufficient area, each 300 mm away from the other and each connected to the GRP through its own bleed lead.
equired tests. Where customer-supplied functional test equipment is upset by ESD tests, and no quick fixes seem to work, it is possible to run out of time trying to fix the susceptibility of the test мәృ е е t!eм of Бu!леч иәчł 'łuәud!nbə weeks (or maybe months) until another
timeslot can be booked. The test procedure The procedure followed in the test is divided into direct application of contact and/or air discharges, and indirect contact discharges applied to the VCP (and to the HCP, for table-top equipment). An EN 61000-4-2 compliant ESD gun itself is capable of both contact and air
 tips. For the contact discharge, the
 with the tested point, and then the highvoltage relay within the unit is closed to apply the discharge to the tip. Contact discharges remove the variability associated with the breakdown of the air gap in the air discharge method, and it is the preferred method wherever the ocation to be tested is conducting.
 coated, but the coating is not intended to be insulating, the pointed tip is firstly pressed onto the coating hard enough to penetrate it and reach the conductor
For insulating surfaces the air discharge method using the rounded tip is employed, with the high-voltage relay closed so that the tip remains 'live' until discharged by the spark (if a spark occurs). Favourite locations for air

in plastic enclosures, and the gaps
between key caps or around displays.

Monitoring the EUT for performance degradation during ESD tests

The functional performance degradation allowed during and after personnel ESD immunity tests may be specified by but if applying the generic standards EN 61000-6-1 (which has replaced EN 50082-1) or EN 61000-6-2 (which has replaced EN 50082-2) all that is
necessary is that the performance is no worse than the specification in the manufacturer's 'data sheet' for the product - which should represent what its users claims for the product.

Thought should be given to how the functional performance of the produc be tested with appropriate levels of accuracy and repeatability, well before the product's planned testing date, so that made. For example, some electrical or electronic test instruments can themselves be upset by nearby ESD events, or by the transient currents that flow down the interconnecting cables.

 they will no doubt have already discovered how to make it immune enough. But where functional testing employs instruments provided by the product manufacturer (e.g. signal or distortion analysers, display screens, computers, elc.) and this can lengthy spells of trying to decide whether
it is the EUT that is failing or the test equipment, all the while burning money at premium test lab rates. Also, test laboratories book their work weeks (or even months) in advance, allocating customers testing timeslots that should be long enough to perform the

The test set-up for floor standing products

(adapted from figure 6 of EN 61000-4-2)

VCP connected to GRP by
VCP connected to GRP
'bleed lead'
Moved around EUT to

- discharge
 Contact discharge to edge of VCP

 REO can create cusany requirements
REO can create custom loads to meet

For some products, electrical, mechanical, hydraulic or pneumatic loads; high-power three-phase electrical supplies or supplies of hydraulic or pneumatic power (e.g. compressed air) may be required, to lift (elevator) drive systems, for instance, it is normal to use a large flywheel that has a moment of inertia similar to that of a
An ESD test to EN $61000-4-2$ is only
required at such points and surfaces which
are: "...accessible to persons during
normal use.". Section 8.3 .1 of the standard
gives guidance on what is meant by an
accessible point, and lists five types of
location that are excluded from ESD
testing...
a) Locations only accessible during
maintenance
b) Locations only rarely accessed during
service by the user (e.g. changing
batteries, changing the cassette tape in an
answering machine)
c) Locations that are not accessible after
following the user instructions (e.g. the
rear of wall-mounted equipment)
d) The contacts of connectors that have a
metallic connector shell
e) Contacts that are ESD sensitive because of functional reasons and are fitted with an ESD warning label (note that the standard does not specify the actual In all these above five situations, the user
 잉 precautions for the above list of excluded Of course, there is nothing to stop a
 EMC test laboratory apply ESD testing to some (or all) of the above locations so that no user ESD instructions are required. It is well known that people only bother to read
 so additional ESD testing might help

It is common to rotate table-top equip on
to perform the indirect tests required on әр!s әшes әчt woil sep!s anof st! to чəeә of the HCP. This means that the VCP can remain in more or less the same place too. But rotating the EUT will alter the ways in which the cables drape, so әपł мочs pinous sydeıбоңочd ло sби!мелр different cable layouts in each case so Selection of test points

 'weak points', can take a very long time 'peəұsul 'əuop łou s! s!ч! os - pəәpu!

 уеәм әшеs әчł pu!! К॥ensn ॥!М sıәәu! s! әכиə!uәdxә әسos $\mathfrak{\imath n q}$ ' $\perp \cap \exists$ ue uo słods required.
 help in locating weak spots - for
 or joints, displays, membrane switch
 ә૫ł рие 'е!рәш әряелошәл рие ио!!е!!!чиәл
 testing using air-discharge with a fast
 other weak points. With the gun set to continuous discharge (or a rate of 20

 of the product will vary the voltage at

windowing.
8.3.1 of the standard) - because it also
done, although this may conceivably
depend on the design of the EUT.
For each point and each of these sets of discharges, start off at the lowest test level ($\pm 2 \mathrm{kV}$) and increase through the
other test levels until the maximum specified test level is reached. This is usually $\pm 4 \mathrm{kV}$ for contact discharge and $\pm 8 \mathrm{kV}$ for air discharge, but some product standards may require higher or lower maximum values. In real life, ESD events with lower voltages than the maximum tested level are much more common, and non-linearities in the EUT's response can mean that products that pass at the maximum voltage can fail at lower voltages. So,
testing at intermediate levels is a requirement of EN 61000-4-2 (as it is for most/all of the EN 61000-4 series' transient tests) and is generally known as 'windowing'.

Indirect discharge to the VCP has also to be performed for all types of product, with indirect discharge to the HCP also applied
 discharges, and are simulate the effect of an ESD event the case of a well-insulated product, the indirect tests may be the only tests in which the gun actually achieves a

The gun must be held edge-on to the VCP or HCP being discharged to. In the case of the VCP it must be applied to the centre of a vertical edge - but in the case of the HCP it must be in-line with the centre of the face of the EUT. All four faces of the EUT must be tested, and the EUT the VCP must be moved around so that each face of the EUT is "...completely illuminated.".
 inside the product, near enough to these gaps, an air discharge will fly through the gaps to reach them. Some insulated surfaces use such thin insulation (e.g. coatings) that the test voltages might break down the insulation itself and the air discharge penetrate right through it.

The orientation of the ESD gun with espect to the product affects the stray capacitance between the front of the gun and the EUT, so to aid test repeatability
 surface being tested. In addition, to mprove repeatability when doing the air discharge, the gun should be handled 2 says (sic): "...the tip ... shall be approached as fast as possible (without causing mechanical damage) to touch the spark that occurs is greatly affected by the approach speed. A wavering, cautious approach with the tip will result in large variations in the spark.

The test procedure is as follows.

- Select a suitable set of points for the test application (see below), and make sure these are documented with reference to a drawing (or annotated photograph) of the
product.
 apply at least ten discharges, allowing at least one second between each and checking the EUT's response each time.
Unless the most sensitive polarity is already known, apply ten discharges in each polarity. This could be ten positive followed by ten negative, or alternate positive and negative, or any combination in between. Provided that the EUT
shouldn't matter in what order this is
 gun's voltage should be increased occur. The voltage at which this happens must be recorded. The process is repeated with negative test voltages, and then again with both positive and negative voltages using the contact discharge tip. The result will be a calibration test report for that specific ESD verification fixture, for that specific ESD
 К!!!!unч әчł snıd) un6 әчł Кq рәКеןds!p
 punoı6 s,un6 әपł 兀оł әроэ ио!̣еכ!!!uәр!
 above tests, must also be documented in the fixture's calibration report.

To check an ESD gun (daily, or prior to
testing) the same verification procedure as above is gone through, using the same
verification fixture and the same gun
ground lead in the same arrangement.
simply left for long enough for the excess charge to 'leak away' naturally through the air. An air ioniser can be used to hasten the natural air leaking process, and a nonused to determine that the EUT has discharged.

Calibration and verification of the ESD gun and its ground lead

Section 6.2 and Figure 3 of EN 61000-4-2 describe the calibration/verification required for an ESD gun, and Annex B contains the construction of the current sensing transducer that must be used. This is mostly of interest to ESD gun
manufacturers and calibration laboratories, although some test labs like to have their own 'cal lab' so as not to waste the time taken in simply sending test gear to a separate lab and getting it back.

But ESD guns can themselves suffer from errors, failures or damage (e.g. by being dropped) so some sort of 'gun checking' чэеә ло К!!ер ґәцџ!ә ‘рәрәәи s! əınрәэол time an ESD test is about to be started. IEC/ISO 17025 [18] requires all accredited test laboratories to check their ESD guns in this way, but EN 61000-4-2 does not describe any suitable methods.

One commonly used ESD gun checking method is to make a simple plastic ESD
 ue woı wu ع เo əouełs!p pəx!f e ұe un反 fixture may be closer than 8mm to the tip's metal end, except for the part that holds the earthed metal plate.

When the ESD gun has just returned from a full calibration, and presumably has not yet had time to go wrong, its air-discharge tip is placed correctly in the verification
fixture and the gun set to +1 kV and
 is very odd indeed to find non-excluded tems in what is introduced as a list of excluded items, and this is a good example of why it is very important to read try to figure out what it is that they really mean to be done.

So connectors that are accessible to the user, and do not have a metallic shell (or ESD protective cover with ESD warning label) $\frac{\text { are required by the present version }}{\text { of EN }} 61000-4-2$ to have their pins ESD
 Note, however, that some product or product-family standards might alter this specifically states (in Clause 4.2.1): "The application of ESD to the contacts of open connectors is not required by this publication."

Testing ungrounded products
 EUT between pulses - because, for example, it has no external connections then the stress voltage will change after aduce the applied stress, if the voltage on the EUT rises towards the applied value on consecutive applications of the same polarity, or it will increase it, if the polarity s changed between applications.

Section 7.1.3 of EN 61000-4-2 requires the charge on the EUT from a discharge to be removed before the next one. It describes ways in which a bleed resistor cable similar to those used for the EUT during the test. If the 'bleed lead' could affect the test outcome for some reason, a carbon fibre brush attached to a 'bleed lead' can instead be applied to the
EUT after each discharge test, or the EUT
But personnel ESD immunity tests are
often done outside shielded chambers, or
on-site, for example for diagnostics or
when collecting test evidence to support a
Technical Construction File for a large
system or an installation.
Of course, the product being tested must
operate properly in the first place, and if
testing on a site that suffers from high
levels of electromagnetic 'noise' it may be
necessary to use filtering and shielding
techniques to be able to distinguish
between the effects of the ambient noise
and the effects of the test. Similarly,
where the ESD testing might cause
interference to other equipment, it may be
necessary to use filtering and shielding
techniques to prevent this from
happening.

$$
\begin{aligned}
& \text { A selection of typical REO Filters for } \\
& \text { AC supplies }
\end{aligned}
$$

Important Safety Note: Don't forget that interference, especially with aircraft or other vehicular systems, some machinery or process control systems, and implanted electronic devices such as pacemakers, can have a cousions must be taken to appropriate precautions must be ta
make sure that nobody's safety is compromised by ESD testing.

It is also a good idea to take precautions where there is a possibility of significant financial loss being caused by the interference from on-site testing. When ESD tests are performed, the very wideband frequencies generated by the spark discharges can be emitted from cables and metalwork, especially at their resonant frequencies. These emissions can interfere with nearby equipment, so it may be necessary to conduct the tests in a location that is far enough away from other equipment not to cause a nuisance.
 ESD tests inside shielded rooms or
shielded tents (no need for any RF
absorber if the enclosure is room-sized) to prevent emissions from causing
interference problems. Shielding tents
have the advantage that they are easily
room) and can be packed away when not in use.

Some EMC laboratories and manufacturers use metal shipping containers - easily modified with
gasketted doors, mesh-shielded ventilation and filtered mains supplies - as shielded rooms for ESD and other transient
immunity tests, to help avoid interference with nearby equipment. The containers are usually painted nice bright colours inside room, strong and stable enough to be
stacked several high if floor area is tight.

On-site ESD testing to EN 61000-4-2 is very easy to do, because of the relatively simple test set-up required and the easy portability of the test gear (e.g. using an ESD gun that is battery powered and comes with a spare battery pack, so one can be charging while the other is in use). Section 7.2 and Figure 7 of EN 61000-4-2 describe what it calls 'post installation tests' which are suitable for on-site testing and merely requires the use of a 0.3×2 metre reference plane, which is not too ESD tests are also described in considerable detail in chapter 10 of [19].

On-site ESD testing can interfere with other equipment or systems. See the next section on dealing with this.

A first draft of the proposed IEC 61000-4-2 $2^{\text {nd }}$ Edition was circulated on 5 th January 2001. It is a complete re-write of the guidance annexes. Its main differences from the exi each test point

A clear area around the test site is

The generator specification is

There are new requirements for calibration

There are extra requirements on the
GRP, HCP VCP and bleed wires

- In the setup: the EUT cables are to be terminated with CDNs or EM Clamps;
there is a new setup for "small" table-top

EUTs; the method for ungrounded first edition

There is more detailed guidance on test
methods; for contact discharge, it is no
longer necessary to satisfy all lower
levels, though it still is for air discharge
An "escalation strategy" is presented for
difficult-to-reproduce failures
contentious issues in the above list, and at
the time of writing (October 2004) this
proposed 2nd edition is still going through
the IEC committee process with no end yet
Second-hand and hired ESD testers are also available, but it helps to check that hey comply with EN 61000-4-2:1995 (or later) - as some older versions might have risetimes of 5 ns instead of $0.7-1 \mathrm{~ns}$. It is always preferable to use an ESD tester that is compliant to EN/IEC 61000-$4-2$, where this is the basic ESD standard that the product's EMC immunity standard references.
For all but compliance and 'pre-
compliance' tests, using an uncalibrated

measurement is not traceable to the
 important. But it is very important for any
 always required in the test equipment and test methodology.
During design, development or QA testing, always try to reproduce the final assembly of the circuit being tested (shielding, earth bonding, proximity to metal objects or structures, etc.), as the stray inductances and capacitances in the final build state can have an important ‘!nכי! And always carefully record all the details fle test set-up in the test $\stackrel{\vdots}{\stackrel{\rightharpoonup}{\overleftarrow{4}}}$

> Testing using alternative methods from those in EN 61000-4-2 cannot give any real confidence that "full-compliance" tests for personnel ESD immunity would be passed. But such non-compliant tests may be valuable for improving the reliability of a product, especially if they simulate the personnel ESD voltages and currents that could be present in its real-life electromagnetic environments. Many equipment rental companies have stocks of EN 61000-4-2 calibrated test gear needed to do personnel ESD immunity tests properly, and will rent them out for daily, weekly, or monthly periods. So the easiest way to perform these tests with reasonable accuracy and lowest cost is often to hire the equipment and do the tests yourself. Note that saving money on test labs by doing testing yourself requires competence (appropriate skills and experience, and attention to detail and documentation). The test set-ups for personnel ESD immunity are not difficult to achieve in a typical manufacturing company, as they don't necessarily have to be performed in special test chambers - but see the later section preventing ESD tests from causing interference. However, a number of alternative personnel ESD generators and test methods can be used if EN $61000-4-2$ compliance is not important. The use of home-made ESD guns, for example made by modifying piezo-electric gas lighters, can be helpful for testing during design and development, fault finding and QA, but are not described here, see [11] and [21] for more on these.

Examples of REO isolating transformers

Important Safety Note: Always take all safety precautions when working with hazardous voltages, such as 230 V or 400 V (3-phase) electricity. If you are not sure about all of these precautions obtain and follow the guidance of an electrical "health and safety at work" expert. When constructing equipment that employs hazardous voltages, always fully apply the latest versions of the relevant parts of EN/IEC 61010-1, at least.

If either of the above situations arises, fere are a number of issues that will to be taken into account to suppress the interfering frequencies effectively. Suitable filtering and shielding techniques are described in [20]. It may be possible to shielded tent, and filter each of the cables entering or leaving the tent at least with a large ferrite clamp or number of small clipon ferrite clamps, placed at the point where the cable penetrates the tent. Ferrishield, Inc. make some very large ferrites for this purpose: their CS28B2000 has its peak impedance at 300 MHz , 000Zg0ZSכ pue 'zHWOOL łe 000ZgsZS at 2.45 GHz . Don't forget that a shielded tent usually requires a shielded bottom
 may not be enough to simply drape a fivesided shielding tent over the equipment being tested.

An example of a low-cost shielded tent (courtesy of Hitek Electronic Materials Ltd) \square nin Min $5+\frac{4}{4}$ (20 Coses淂时 $=$
Correlating alternative test methods with EN 61000-4-2
Determining an 'engineering margin'

Where a manufacturer is using an ESD
gun or test method that is not identical to
EN $61000-4-2$, a larger engineering
margin is recommended (but very hard to
determine other than by direct comparison
of test methods on the same EUT).
EN 61000-4-2 requires testing to not level, exceed the specified maximum test level,
to avoid damage to the product - but if the customer requests testing to higher levels the test laboratory will ignore that requirement. ESD testing is usually one of
compliance testing, because of the
possibility of actual damage to equipment.
The increments in the ESD test levels
specified by EN 61000-4-2 can be added to by additional steps, if specified by the customer. So instead of going straight from $\pm 8 \mathrm{kV}$ air discharge to $\pm 15 \mathrm{kV}$, iont be additional tests at ± 10 and $\pm 12 \mathrm{kV}$ might be added, for extra confidence.
alternative ESD test methods can lead to over-engineering. The additional cost to make the product pass the alternative test method with the necessary engineering margins should be weighed against the cost of doing the testing properly.

Part 4 - Filtering and Shielding", Keith Armstrong, EMC \& Compliance Journal, August 2000, pages 17-26, download it

[21] "EMC Testing Part 3-Fast Transient Burst, Surge, Electrostatic Discharge", Tim Williams and Keith Armstrong, EMC \& Compliance Journal June 2001, pp 19-29. On-line at http://www.compliance[220

 February 2001, pp 27-39. On-line at http://www.compliance-club.com/Keith ArmstrongPortfolio.
pəseyэ.nd әq Кеш spıepuełs כヨו pue $N \exists$ from the British Standards Institution (BSI) at: orders@bsi-global.com. To enquire 9668 oz(0) tt+ uo səo! !ias дəmoisn

 purchased with a credit card from the online bookstore at www.iec.ch, and many of them can be delivered by email within
[12] "Characterization of Human Metal
ESD Reference Discharge Event and ESD Reference Discharge Event and Failure Levels - Part I: Reference Event' and - "Part II: Correlation of Generator

解 Transactions on EMC Vol. 46 No.
November 2004, pages 498-511.
 can be found in the "Banana Skins compendium", via a link from http://www.compliance-club.com or archive1 /Bananaskins.htm, especially (at the time of writing) numbers $16,23,129,138,170$, 199, 206, 219 and 251.
[14] The "F-PEG-1 Proximity ESD Field Generator" made by Fischer Custom Communications Inc., visit http://www.emcesd.com/products/peg-1.
 website http://www.fischercc.com.
[15] "Why EMC testing is Inadequate for Functional Safety", Keith Armstrong, IEEE
 Santa Clara, August 9-13 2004, ISBN 0Conformity magazine, March 2005 pp 15http://www.conformity.com. [16] "The IEE's Training Course on EMC for Functional Safety (also for higheliability and legal metrology), visit . If no courses are listed contact the IEE's Functional Safety Professional Network
(via the same IEE homepage) and ask.
 An Update, Kernal Issue No. 44, January 2003, pp 24-30, on-line at: http://www.compliance-club.com/ KeithArmstrongPortfolio.
 nterference for a Typical House in 20 Anita Woogara, 17 September 1999, reference MDC001D002-1.0. This Agency has now been absorbed into Ofcom, and at the time of writing this report is available via the static legacy section of the Offom
website, at: http://www.ofcom.org.uk/ static/archive/ra/topics/research/

8] The 'Mr Static' series of articles by
Niels Jonassen, Compliance Engineering magazine, 2000-2002. Visit http://www.cemag.com and search for Niels.
[9] Keytek Minizap MZ-15, supplied by Thermo Electron Corporation. Visit http://www.thermo.com and search by the product name. Information on performing furniture discharge tests is given in the
products' handbook.

10] "Unusual Forms of ESD and Their
Effects" by Doug Smith, Conformity 2001,
 in the 1999 EOS/ESD Symposium

Handbook, and can be downloaded from
http://www.emcesd.com.

$$
\begin{aligned}
& \text { [11] Doug Smith's website, from which } \\
& \text { numerous articles on real-life ESD can be } \\
& \text { downloaded, is: http://emcesd.com. }
\end{aligned}
$$

 measurement EMC Publication" (a consolidated version with the same content as the 1995 version plus amendments A1:1998 and A2:2000)
[2] EN 61000-4-2:1995 "Electromagnetic Compatibility (EMC) - Part 4: Testing and meastrostatic discharge immunity test Basic EMC Publication" (despite its printed date, the versions supplied by EU National Standards Bodies, such as British ds, is A1 ard amendments A1 and A2, see above).
[3] European Union Directive 89/336/EEC (as amended) on Electromagnetic omion of the EMC Directive; a table of all the EN standards listed under the Directive, a Directive; lists of appointed EMC Competent Bodies; and progress on the $2^{\text {nd }}$ Edition lure / electr_equipment/emc/index.htm.

[4] European Union Directive 2004/108/EC

 on Electromagnetic Compatibility (2 $2^{\text {nd }}$ Edion), frum. lex/lex/LexUriServ/site/en/oj/2004/I_390/I_[5] The IEE's 2000 guide: "EMC \&
Functional Safety", can be downloaded as a
'Core' document plus nine 'Industry
Annexes' from
Functional Safety", can be downloaded as a
'Core' document plus nine 'Industry
Annexes' from Annexes' from
http://www.iee.or
cfm . It is recommended that everyone
downloads the Core document and at least reads its first few pages. Complying with this IEE guide could reduce exposure to liability
Single phase,
250 V ,
high performance
unit suitable for
most applications
 ๓ ๓
3 phase,
$3 \times 440 \mathrm{~V}$,
3 line mains filter
告

 Phase-angle and frequency controllers

Medical Transformers

REO - Market Sectors

Chokes and high frequency

Power supplies and load banks

sıołs!səı 6u!yeıq pue sıəŋ!!」

Solar transformers

Soft-starts

Rheostats and variacs

Motor Control Systems

[^0]: Some examples of real-life interference due to ESD are included in [13].

